663 research outputs found

    Optimal Microlensing Observations

    Get PDF
    One of the major limitations of microlensing observations toward the Large Magellanic Cloud (LMC) is the low rate of event detection. What can be done to improve this rate? Is it better to invest telescope time in more frequent observations of the inner high surface-brightness fields, or in covering new, less populated outer fields? How would a factor 2 improvement in CCD sensitivity affect the detection efficiency? Would a series of major (factor 2--4) upgrades in telescope aperture, seeing, sky brightness, camera size, and detector efficiency increase the event rate by a huge factor, or only marginally? I develop a simplified framework to address these questions. With observational resources fixed at the level of the MACHO and EROS experiments, the biggest improvement (factor ~2) would come by reducing the time spent on the inner ~25 deg^2 and applying it to the outer ~100 deg^2. By combining this change with the characteristics of a good medium-size telescope (2.5 m mirror, 1" point spread function, thinned CCD chips, 1 deg^2 camera, and dark sky), it should be possible to increase the detection of LMC events to more than 100 per year (assuming current estimates of the optical depth apply to the entire LMC).Comment: Submitted to ApJ, 13 pages plus 3 figure

    Experimental constraints on the uncoupled Galileon model from SNLS3 data and other cosmological probes

    Get PDF
    The Galileon model is a modified gravity theory that may provide an explanation for the accelerated expansion of the Universe. This model does not suffer from instabilities or ghost problems (normally associated with higher-order derivative theories), restores local General Relativity -- thanks to the Vainshtein screening effect -- and predicts late time acceleration of the expansion. In this paper, we derive a new definition of the Galileon parameters that allows us to avoid having to choose initial conditions for the Galileon field, and then test this model against precise measurements of the cosmological distances and the rate of growth of cosmic structures. We observe a small tension between the constraints set by growth data and those from distances. However, we find that the Galileon model remains consistent with current observations and is still competitive with the \Lambda CDM model, contrary to what was concluded in recent publications.Comment: 19 pages, 15 figures, accepted to Astronomy and Astrophysic

    First experimental constraints on the disformally coupled Galileon model

    Get PDF
    The Galileon model is a modified gravity model that can explain the late-time accelerated expansion of the Universe. In a previous work, we derived experimental constraints on the Galileon model with no explicit coupling to matter and showed that this model agrees with the most recent cosmological data. In the context of braneworld constructions or massive gravity, the Galileon model exhibits a disformal coupling to matter, which we study in this paper. After comparing our constraints on the uncoupled model with recent studies, we extend the analysis framework to the disformally coupled Galileon model and derive the first experimental constraints on that coupling, using precise measurements of cosmological distances and the growth rate of cosmic structures. In the uncoupled case, with updated data, we still observe a low tension between the constraints set by growth data and those from distances. In the disformally coupled Galileon model, we obtain better agreement with data and favour a non-zero disformal coupling to matter at the 2.5σ2.5\sigma level. This gives an interesting hint of the possible braneworld origin of Galileon theory.Comment: 9 pages, 6 figures, updated versio

    Caustic Crossing Microlensing Event by Binary MACHOs and Time Scale Bias

    Get PDF
    Caustic crossing microlensing events provide us a unique opportunity to measure the relative proper motion of the lens to the source, and so those caused by binary MACHOs are of great importance for understanding the structure of the Galactic halo and the nature of MACHOs. The microlensing event 98-SMC-01, occurred in June 1998, is the first event for which the proper motion is ever measured through the caustic crossing, and this event may be caused by binary MACHOs as we argue in this Letter. Motivated by the possible existence of binary MACHOs, we have performed the Monte Carlo simulations of caustic crossing events by binary MACHOs and investigated the properties and detectability of the events. Our calculation shows that typical caustic crossing events have the interval between two caustic crossings (tcct_{\rm cc}) of about 5 days. We argue that with the current strategy of binary event search the proper motions of these typical events are not measurable because of the short time scale. Therefore the proper motion distribution measured from caustic crossing events suffers significantly from {`}time scale bias{'}, which is a bias toward finding long time scale events and hence slowly moving lenses. We predict there are two times more short time scale events (tcc≀10t_{\rm cc}\le 10 days) than long time scale events (tcc≄10t_{\rm cc}\ge 10 days), and propose an hourly monitoring observation instead of the nightly monitoring currently undertaken to detect caustic crossing events by binary MACHOs more efficiently.Comment: 8 pages and 3 figures, accepted for publication in ApJ Letter

    Self-Lensing Models of the LMC

    Get PDF
    All of the proposed explanations for the microlensing events observed towards the LMC have difficulties. One of these proposed explanations, LMC self-lensing, which invokes ordinary LMC stars as the long sought-after lenses, has recently gained considerable popularity as a possible solution to the microlensing conundrum. In this paper, we carefully examine the set of LMC self-lensing models. In particular, we review the pertinent observations made of the LMC, and show how these observations place limits on such self-lensing models. We find that, given current observational constraints, no purely LMC disk models are capable of producing optical depths as large as that reported in the MACHO collaboration 2-year analysis. Besides pure disk, we also consider alternate geometries, and present a framework which encompasses the previous studies of LMC self-lensing. We discuss which model parameters need to be pushed in order for such models to succeed. For example, like previous workers, we find that an LMC halo geometry may be able to explain the observed events. However, since all known LMC tracer stellar populations exhibit disk-like kinematics, such models will have difficulty being reconciled with observations. For SMC self-lensing, we find predicted optical depths differing from previous results, but more than sufficient to explain all observed SMC microlensing. In contrast, for the LMC we find a self-lensing optical depth contribution between 0.47e-8 and 7.84e-8, with 2.44e-8 being the value for the set of LMC parameters most consistent with current observations.Comment: 20 pages, Latex, 14 figures, submitted to Ap

    The Extended Baryon Oscillation Spectroscopic Survey: Variability Selection and Quasar Luminosity Function

    Full text link
    The SDSS-IV/eBOSS has an extensive quasar program that combines several selection methods. Among these, the photometric variability technique provides highly uniform samples, unaffected by the redshift bias of traditional optical-color selections, when z=2.7−3.5z= 2.7 - 3.5 quasars cross the stellar locus or when host galaxy light affects quasar colors at z<0.9z < 0.9. Here, we present the variability selection of quasars in eBOSS, focusing on a specific program that led to a sample of 13,876 quasars to gdered=22.5g_{\rm dered}=22.5 over a 94.5 deg2^2 region in Stripe 82, an areal density 1.5 times higher than over the rest of the eBOSS footprint. We use these variability-selected data to provide a new measurement of the quasar luminosity function (QLF) in the redshift range 0.68<z<4.00.68<z<4.0. Our sample is denser, reaches deeper than those used in previous studies of the QLF, and is among the largest ones. At the faint end, our QLF extends to Mg(z ⁣= ⁣2)=−21.80M_g(z\!=\!2)=-21.80 at low redshift and to Mg(z ⁣= ⁣2)=−26.20M_g(z\!=\!2)=-26.20 at z∌4z\sim 4. We fit the QLF using two independent double-power-law models with ten free parameters each. The first model is a pure luminosity-function evolution (PLE) with bright-end and faint-end slopes allowed to be different on either side of z=2.2z=2.2. The other is a simple PLE at z<2.2z<2.2, combined with a model that comprises both luminosity and density evolution (LEDE) at z>2.2z>2.2. Both models are constrained to be continuous at z=2.2z=2.2. They present a flattening of the bright-end slope at large redshift. The LEDE model indicates a reduction of the break density with increasing redshift, but the evolution of the break magnitude depends on the parameterization. The models are in excellent accord, predicting quasar counts that agree within 0.3\% (resp., 1.1\%) to g<22.5g<22.5 (resp., g<23g<23). The models are also in good agreement over the entire redshift range with models from previous studies.Comment: 15 pages, 12 figures, accepted for publication in A&

    The large-scale Quasar-Lyman \alpha\ Forest Cross-Correlation from BOSS

    Full text link
    We measure the large-scale cross-correlation of quasars with the Lyman \alpha\ forest absorption in redshift space, using ~ 60000 quasar spectra from Data Release 9 (DR9) of the Baryon Oscillation Spectroscopic Survey (BOSS). The cross-correlation is detected over a wide range of scales, up to comoving separations r of 80 Mpc/h. For r > 15 Mpc/h, we show that the cross-correlation is well fitted by the linear theory prediction for the mean overdensity around a quasar host halo in the standard \Lambda CDM model, with the redshift distortions indicative of gravitational evolution detected at high confidence. Using previous determinations of the Lyman \alpha\ forest bias factor obtained from the Lyman \alpha\ autocorrelation, we infer the quasar bias factor to be b_q = 3.64^+0.13_-0.15 at a mean redshift z=2.38, in agreement with previous measurements from the quasar auto-correlation. We also obtain a new estimate of the Lyman \alpha\ forest redshift distortion factor, \beta_F = 1.1 +/- 0.15, slightly larger than but consistent with the previous measurement from the Lyman \alpha\ forest autocorrelation. The simple linear model we use fails at separations r < 15 Mpc/h, and we show that this may reasonably be due to the enhanced ionization due to radiation from the quasars. We also provide the expected correction that the mass overdensity around the quasar implies for measurements of the ionizing radiation background from the line-of-sight proximity effect.Comment: 24 pages, 6 figures, published in JCA

    Sloan Digital Sky Survey III Photometric Quasar Clustering: Probing the Initial Conditions of the Universe using the Largest Volume

    Full text link
    The Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z = 0.5 and z = 2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans ~11,000 square degrees and probes a volume of 80(Gpc/h)^3. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimal quadratic estimator in four redshift slices with an accuracy of ~25% over a bin width of l ~10 - 15 on scales corresponding to matter-radiation equality and larger (l ~ 2 - 30). Observational systematics can strongly bias clustering measurements on large scales, which can mimic cosmologically relevant signals such as deviations from Gaussianity in the spectrum of primordial perturbations. We account for systematics by employing a new method recently proposed by Agarwal et al. (2014) to the clustering of photometrically classified quasars. We carefully apply our methodology to mitigate known observational systematics and further remove angular bins that are contaminated by unknown systematics. Combining quasar data with the photometric luminous red galaxy (LRG) sample of Ross et al. (2011) and Ho et al. (2012), and marginalizing over all bias and shot noise-like parameters, we obtain a constraint on local primordial non-Gaussianity of fNL = -113+/-154 (1\sigma error). [Abridged]Comment: 35 pages, 15 figure
    • 

    corecore